1. Ranadip Acharya, Rohan Bansal, Justin Gambone and Suman Das, A microstructure evolution model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part II), Metallurgical and Materials Transactions B, 2014 (in press) http://link.springer.com/article/10.1007/s11663-014-0183-z?sa_campaign=email/event/articleAuthor/onlineFirst.
  2. Ranadip Acharya, Rohan Bansal, Justin Gambone and Suman Das, A coupled thermal, fluid flow and solidification model for the processing of single-crystal alloy CMSX-4 through scanning laser epitaxy for turbine engine hot-section component repair (part I), Metallurgical and Materials Transactions B, 2014 (in press) http://dx.doi.org/10.1007/s11663-014-0117-9.
  3. Jeomoh Kim, Mi-Hee Ji, Dajun Yuan, Rui Guo, Jianping Liu, Mojtaba Asadirad, Theeradetch Detchprohm, Min-Ki Kwon, Russell D. Dupuis, Suman Das, and Jae-Hyun Ryou, Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation, Applied Physics Letters, 104, 141105, 2014, http://scitation.aip.org/content/aip/journal/apl/104/14/10.1063/1.4871089.
  4. Ranadip Acharya, Dajun Yuan and Suman Das, Fabrication of gold nanostructures through pulsed laser interference patterning, Applied Physics Letters, 103, 223010, 2014, http://scitation.aip.org/content/aip/journal/apl/103/22/10.1063/1.4833548.
  5. Shaun Eshraghi, Mehdi Karevan, Kyriaki Kalaitzidou, and Suman Das, Processing and Properties of Electrically Conductive Nanocomposites Based on Polyamide-12 Filled with Exfoliated Graphite Nanoplatelets Prepared by Selective Laser Sintering, International Journal of Precision Engineering and Manufacturing, 14(11), pp. 1947-1951, 2014, http://link.springer.com/article/10.1007%2Fs12541-013-0264-y.
  6. Mehdi Karevan, Shaun Eshraghi, Rosario Gerhardt, Suman Das, and Kyriaki Kalaitzidou, Effect of processing method on the properties of multifunctional exfoliated graphite nanoplatelets/polyamide 12 composites, Carbon, 64, pp. 122–131, 2013, http://www.sciencedirect.com/science/article/pii/S0008622313006775.
  7. Taiwo R. Alabi, Dajun Yuan, David Bucknall, and Suman Das, Silicon Oxide Nanowires: Facile and Controlled Large Area Fabrication of Vertically Oriented Silicon Oxide Nanowires for Photoluminescence and Sensor applications, ACS Applied Materials and Interfaces, 5(18), pp. 8932-8938, 2013 http://pubs.acs.org/doi/abs/10.1021/am401787c.
  8. Taiwo R. Alabi, Dajun Yuan and Suman Das, Hierarchical Metallic and Ceramic Nanostructures from Laser Interference Ablation and Block Copolymer Phase Separation, Nanoscale, 5, 3912– 3917, 2013 http://pubs.rsc.org/en/Content/ArticleLanding/2013/NR/C3NR33438D.
  9. Shaun Eshraghi and Suman Das, Micromechanical finite element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone:hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering, Acta Biomaterialia, 8(8), pp. 3138-3143, 2012. http://dx.doi.org/10.1016/j.actbio.2012.04.022
  10. Dajun Yuan, Wei Lin, Rui Guo, C.P. Wong, and Suman Das, The fabrication of vertically aligned and periodically distributed carbon nanotube (CNT) bundles and periodically porous carbon nanotube films through a combination of laser interference ablation and metal-catalyzed chemical vapor deposition (CVD), Nanotechnology, 23, 215303, 2012. http://stacks.iop.org/0957-4484/23/215303
  11. Dajun Yuan, Andrés Lasagni, Jeffrey L. Hendricks, David C. Martin, and Suman Das, Patterning of periodic nano-cavities on PEDOT-PSS using nanosphere-assisted near-field optical enhancement and laser interference lithography, Nanotechnology, 23, pp. 015304, 2012.
  12. S.R. Athreya, K. Kalaitzidou, and S. Das, Microstructure, Thermomechanical Properties, and Electrical Conductivity of Carbon Black-Filled Nylon-12 Nanocomposites Prepared by Selective Laser Sintering, Polymer Engineering and Science, 52(1), pp.12-20, 2012.
  13. Hao Fang, Dajun Yuan, Rui Guo, Su Zhang, Ray P. S. Han, Suman Das, and Zhong Lin Wang, Fabrication of Patterned Polymer Nanowire Arrays, ACS Nano, 5(2), pp. 1476-1482, 2011.
  14. S. R. Athreya, K. Kalaitzidou, and S. Das, Mechanical and microstructural properties of nylon-12/carbon black composites: Selective laser sintering versus melt compounding and injection molding, Composites Science and Technology, 71(4), pp. 506-510, 2011.
  15. Rui Guo, Dajun Yuan, and Suman Das, Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation, Journal of Micromechanics and Microengineering, 21(1), pp. 015010, 2011.
  16. J. W. Halloran, V. Tomeckova, S. P. Gentry, S. Das, P. Cilino, D. Yuan, R. Guo, A. Rudraraju, P. Shao, T. Wu, W. Baker, D. Legdzina, D. Wolski, W.R. Zimbeck, D. Long, Photopolymerization of Powder Suspensions for Shaping Ceramics, Journal of the European Ceramic Society, 31(14), pp. 2613-2619, 2011.
  17. Yaguang Wei, Wenzhuo Wu, Rui Guo, Dajun Yuan, Suman Das, and Zhong Lin Wang, Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays, Nano Letters, 10(9), pp. 3414-3419, 2010.
  18. Dajun Yuan, Rui Guo, Yaguang Wei, Wenzhuo Wu, Yong Ding, Zhong Lin Wang, and  Suman Das, Heteroepitaxial Patterned Growth of Vertically Aligned and Periodically Distributed ZnO Nanowires on GaN Using Laser Interference Ablation, Advanced Functional Materials, 20(20), pp. 3484-3489, 2010.
  19. S. Eshraghi and S. Das, Mechanical and microstructural properties of polycaprolactone scaffolds with 1-D, 2-D, and 3-D orthogonally oriented porous architectures produced by selective laser sintering, Acta Biomaterialia, 6(7), 2467-2476, 2010.
  20. S. R. Athreya, K. Kalaitzidou, and S. Das, Processing and characterization of a carbon black-filled electrically conductive Nylon-12 nanocomposite produced by selective laser sintering, Materials Science and Engineering A, 527(10-11), pp. 2637-2642, 2010.
  21. A. Lasagni, P. Shao, J. L. Hendricks, C. M. Shaw, D. Yuan, D. C. Martin, and S. Das, Direct fabrication of periodic patterns with hierarchical sub-wavelength structures on poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) thin films using femtosecond laser interference patterning, Applied Surface Science, 256(6), pp. 1708-1713, 2010.
  22. A. Lasagni, J. L. Hendricks, C. M. Shaw, D. Yuan, D. C. Martin, and S. Das, Direct laser interference patterning of poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT-PSS) thin films, Applied Surface Science, 255(22), pp. 9186-9192, 2009.
  23. A. Lasagni, D. Yuan, P. Shao, and S. Das, Fabrication of Periodic Microstructures in Pentaerythritol Triacrylate Through Femtosecond Laser Interference Two-Photon Polymerization, Advanced Engineering Materials, 11(7), pp. 595-599, 2009.
  24. A. Lasagni, R. Cross, S. Graham, and S. Das, Fabrication of high aspect ratio carbon nanotube arrays by direct laser interference patterning, Nanotechnology 20(24), pp. 245305, 2009.
  25. A. Lasagni, D. Yuan, and S. Das, Layer by layer interference lithography of three-dimensional microstructures in SU-8, Advanced Engineering Materials, 11(5), pp. 408-411, 2009.
  26. A. Lasagni, D. Yuan, P. Shao, and S. Das, Periodic micropatterning of polyethylene glycol diacrylate hydrogel by laser interference lithography using nano- and femtosecond pulsed lasers, Advanced Engineering Materials, 11(3), pp. B20-B24, 2009.
  27. A. Lasagni, D. Yuan, and S. Das, Rapid fabrication of pentaerythritol triacrylate periodic structures on large areas by laser interference patterning with nanosecond pulses, Journal of Applied Physics, 105, pp. 023101-07, 2009.
  28. Dajun Yuan, Andres Lasagni, Peng Shao, and Suman Das, Rapid Prototyping of Microstructured Hydrogels via Laser Direct-Write and Laser Interference Photopolymerization, Virtual and Physical Prototyping, 3, pp. 221-229, 2008.
  29. Haseung Chung, Katsuo Kurabayashi, and Suman Das, Laser Micro-machining Using Near-field Optics, Applied Surface Science, 254(16), pp. 5105-5110, 2008.
  30. Haseung Chung and Suman Das, Functionally Graded Nylon-11/Silica Nanocomposites Produced by Selective Laser Sintering, Materials Science and Engineering A, 487(1-2), pp. 251-257, 2008.
  31. M.H. Smith, C.L. Flanagan, J. M. Kemppainen, J.A. Sack, H. Chung, S. Das, S.J. Hollister, S.E. Feinberg, Computed Tomography-Based Tissue Engineered Scaffolds in Craniomaxillofacial Surgery, International Journal of Medical Robotics and Computer-Assisted Surgery, 3, 207-116, 2007.
  32. Dajun Yuan and Suman Das, Experimental and Theoretical Analysis of Direct-Write Laser Micromachining of Polymethyl Methacrylate (PMMA) by CO2 Laser Ablation, Journal of Applied Physics, Vol. 101, No.1, 2007.
  33. Haseung Chung and Suman Das, Processing and Properties of Glass Bead Particulate-filled Functionally Graded Nylon-11 composites Produced by Selective Laser Sintering, Materials Science and Engineering A, 437, pp. 226-234, 2006.
  34. Brock Partee, Scott J. Hollister and Suman Das, Selective Laser Sintering Process Optimization for Layered Manufacturing of CAPA® 6501 Polycaprolactone Bone Tissue Engineering Scaffolds, ASME Journal of Manufacturing Science and Engineering, 128, pp. 531-540, 2006.
  35. S.J. Hollister, C.Y. Lin, E. Saito, C.Y. Lin, R.D. Schek, J.M. Taboas, J.M. Williams, B. Partee, C.D. Flanagan, A. Diggs, C.N. Wilke, G.H. Van Lenthe, R. Muller, T. Wirtz, S. Das, S.E. Feinberg, P.H. Krebsbach, Engineering Craniofacial Scaffolds, Orthodontics and Craniofacial Research, 8, 162-173, 2005.
  36. J.M. Williams, A. Adewunmi, R.M. Schek, C.L. Flanagan, P.H. Krebsbach, S.E. Feinberg, S.J. Hollister, S. Das, Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering, Biomaterials, 26, 4817-4827, 2005.
  37. Haseung Chung and Suman Das, Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to step heat flux input, International Journal of Heat and Mass Transfer, 47, 4153-4164, 2004.
  38. Haseung Chung and Suman Das, Numerical modeling of scanning laser-induced melting, vaporization and resolidification in metals subjected to time-dependent heat flux inputs, International Journal of Heat and Mass Transfer, 47, 4165-4175, 2004.
  39. Pranav Kumar, James K. Santosa, Elizabeth Beck and Suman Das, Direct-Write Deposition of Fine Powders Through Miniature Hopper-Nozzles For Multi-Material Solid Freeform Fabrication, Rapid Prototyping Journal, Vol. 10, No.4, 2003.
  40. Suman Das, Physical Aspects of Process Control in Selective Laser Sintering of Metals, Advanced Engineering Materials, Vol.5, No. 10, 2003.
  41. Suman Das, Scott J. Hollister, Colleen Flanagan, Adebisi Adewunmi, Karlin Bark, Cindy Chen, Krishnan Ramaswamy, Daniel Rose and Erwin Widjaja, Freeform Fabrication of Nylon-6 Tissue Engineering Scaffolds (invited), Rapid Prototyping Journal, Vol. 9, No. 1, 2003, pp 43-49.
  42. Suman Das and Scott Hollister, Tissue Engineering Scaffolds (invited), Encyclopedia of Materials-Science and Technology, K.H.J. Buschow, R.W. Cahn, M.C. Flemings, B. Ilschner, E.J. Kramer and S. Mahajan (Eds.), Elsevier, 2002.
  43. D. Bourell, M. Wohlert, N. Harlan, S. Das and J. J. Beaman, Powder Densification Maps in Selective Laser Sintering, Advanced Engineering Materials, Vol. 4, No. 9, 2002, 663-669.
  44. Suman Das, Timothy P. Fuesting, Greg Danyo, Joseph J. Beaman and David L. Bourell, Direct Laser Fabrication of a Gas Turbine Engine Component (invited), Materials and Design, special issue on Rapid Prototyping, Rapid tooling and Solid Freeform Fabrication, Vol. 21, No. 2, April 2000.
  45. Suman Das, Martin Wohlert, Joseph J. Beaman and David L. Bourell, High Performance P/M Components via Selective Laser Sintering/Hot Isostatic Pressing (invited), P/M Science and Technology Briefs, Vol. 1, No. 4, November 1999.
  46. Suman Das, Joseph J. Beaman, Martin Wohlert and David L. Bourell, Processing of Titanium Net Shapes by SLS/HIP (invited), Materials and Design, June 1999 special issue on Solid Freeform Fabrication, Vol 20, No. 2-3, pp. 115-121.
  47. Suman Das, Joseph J. Beaman, Martin Wohlert and David L. Bourell, Producing Metal Parts by Selective Laser Sintering/Hot Isostatic Pressing (invited), JOM, December 1998, Vol 50, No. 12, pp. 17-20.
  48. Suman Das, Joseph J. Beaman, Martin Wohlert and David L. Bourell, Direct Laser Freeform Fabrication of High Performance Metal Components (invited), Rapid Prototyping Journal, Vol. 4, No. 3, 1998.
  49. S. Das, T. Fuesting, L. Brown, N. Harlan, G. Lee, J. J. Beaman, D. L. Bourell, J. W. Barlow, and K. Sargent, Direct SLS Processing for Production of Cermet Composite Turbine Sealing Components, Materials and Manufacturing Processes, Vol. 13, No.3, 1998.
  50. Suman Das, Martin Wohlert, Joseph J. Beaman, and David L. Bourell, Direct Selective Laser Sintering of High Performance Metals for Containerless HIP, Advances in Powder Metallurgy and Particulate Materials-1997, Metal Powder Industries Federation, pp. 21:67-78.
  51. K. A. Bartels, R. H. Crawford, S. Das, S. Guduri, A. C. Bovik, K. R. Diller, and S. J. Aggarwal, Fabrication of macroscopic solid models of three-dimensional microscopic data by selective laser sintering, Journal of Microscopy, Vol. 169, Pt. 3, March 1993.